Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow

نویسندگان

  • Xiaofeng Xu
  • Artem K. Efremov
  • Ang Li
  • Lipeng Lai
  • Ming Dao
  • Chwee Teck Lim
  • Jianshu Cao
چکیده

Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P. falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites' development, the parasites export proteins to the infected RBCs (iRBC) membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC's adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF), and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM). With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thrombospondin mediates the cytoadherence of Plasmodium falciparum-infected red cells to vascular endothelium in shear flow conditions.

Cerebral malaria is thought to involve specific attachment of Plasmodium falciparum-infected knobby red cells to venular endothelium. The nature of surface ligands on host endothelial cells that may mediate cytoadherence is poorly understood. We have investigated the effects of soluble thrombospondin, rabbit antiserum raised against thrombospondin, and human immune serum on cytoadherence of par...

متن کامل

Continued cytoadherence of Plasmodium falciparum infected red blood cells after antimalarial treatment

Development of severe disease in Plasmodium falciparum malaria infection is thought to be, at least in part, due to the sequestration of trophozoite-stage infected red blood cells in the microvasculature. The process of cytoadherence is mediated by binding of the parasite protein PfEMP-1 on the surface of infected red blood cells to endothelial cell receptors. Although antimalarial treatments r...

متن کامل

Thrombospondin Mediates the Cytoadherence of Plasmodium falciparum - tnfected Red Cells to Vascular Endothelium in Shear Flow Conditions

Cerebral malaria is thought to involve specific attachment of Plasmodium falciparum-infected knobby red cells to venular endothelium. The nature of surface ligands on host endothelial cells that may mediate cytoadherence is poorly understood. We have investigated the effects of soluble thrombospondin. rabbit antiserum raised against thrombospondin. and human immune serum on cytoadherence of par...

متن کامل

Cytoadherence of Plasmodium berghei-infected red blood cells to murine brain and lung microvascular endothelial cells in vitro.

Sequestration of infected red blood cells (iRBC) within the cerebral and pulmonary microvasculature is a hallmark of human cerebral malaria (hCM). The interaction between iRBC and the endothelium in hCM has been studied extensively and is linked to the severity of malaria. Experimental CM (eCM) caused by Plasmodium berghei ANKA reproduces most features of hCM, although the sequestration of RBC ...

متن کامل

Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes

In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevupar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013